
A 𝑂 (2𝑛/2) Universal Maximization Algorithm

Thesis by
Charles Dana

In Partial Fulfillment of the Requirements for the
Degree of

MSc X-HEC Entrepreneurs

HEC PARIS
Jouy-en-Josas, France

2023
Defended November 2023

ii

© 2023

Charles Dana
ORCID: 0000-0002-0364-5379

All rights reserved except where otherwise noted

iii

Statement 1.
sup
𝑋∈X

inf
𝑤∈W

Pr(𝑤(𝑋) ≠ 𝑓 (𝑋)) = 0

Statement 2.
inf
𝑤∈W

sup
𝑋∈X

Pr(𝑤(𝑋) ≠ 𝑓 (𝑋)) = 0

In other words, solving MAXSAT[11] Instances just got much more interesting.
No matter the random variable 𝑋 : Ω → R𝑛, under the assumption that 𝑋 (Ω) is
discrete, there exists a model 𝑤 such that the probability of discrepancy between 𝑓

the cost function and 𝑤 the model, can be driven down to zero. Note that Statement
2. is not always satisfied.

iv

ABSTRACT

This Master’s thesis introduces a novel framework for maximizing a cost function
defined over various domains such as natural numbers, real numbers, complex num-
bers, and more. The framework leverages a set of Boolean variables to represent
these domains and formulates optimization problems as weighted clauses involving
these variables. The main idea is to use a local search-based algorithm to iter-
atively manipulate these Boolean variables to maximize the given cost function.
The approach is demonstrated through various experiments including polynomial
factorization, cryptography hash functions, elliptic curve cryptography, and factor-
ing. The results indicate that the proposed method can achieve promising outcomes
across different domains and problem types. The study highlights the potential of
this approach for addressing complex optimization problems in diverse fields.

v

TABLE OF CONTENTS

Abstract . iv
Table of Contents . v
Chapter I: Introduction . 1

1.1 Common Notations . 1
1.2 Definition of a Logical Condition Operator 1
1.3 Definition of a Densely Countable Subset of R𝑛 1
1.4 Definition of Algorithm Complexity 1

Chapter II: Overview of State-of-the-Art Global Maximization Algorithms . . 2
2.1 Gradient Descent: A Greedy Approach to Local Minima 2
2.2 Local Search: Enhancing Local Minima Solutions 2
2.3 Simplex Algorithm: A Swift Alternative to Gradient Descent 2
2.4 MAXSAT Solvers: NP-Hard Complexity, Approximation Strategies . 2

Chapter III:W and Global Maximization of a Given Cost Function 3
3.1 Introduction ofW . 3
3.2 Maximization of 𝑤 ∈ W: Theoretical Background 3
3.3 Maximization of 𝑤 ∈ W: Code Implementation 4
3.4 Maximization of 𝑤 ∈ W: Remarks 4

Chapter IV: Boolean Dissection of Search Space 5
4.1 Boolean Breakdown of N . 5
4.2 Boolean Breakdown of R . 5
4.3 Boolean Breakdown of C . 5
4.4 Boolean Breakdown of R𝑛 . 5

Chapter V: A Universal Expression for 𝑓 : N→ R 6
5.1 An Assortment of Boolean Variables on N 6
5.2 A Proposed Formula 𝑔 : N→ R . 6
5.3 A Key Outcome in Discrete Analysis 6

Chapter VI: Approximating C(C,R) . 7
6.1 Boolean Variables of the Complex Plane 7
6.2 Dense Countable Subset 𝐹 within C 7
6.3 Random Variable 𝑋 on 𝐹 . 7
6.4 Upper Bound on Approximation Failure Probability 7

Chapter VII: Approximating Complex Roots of C[𝑋] 9
7.1 Idea . 9
7.2 Implementation . 9
7.3 Experiment . 9
7.4 Results . 9
7.5 Conclusion . 10

Chapter VIII: Experimenting with the Cryptographic Hash Function SHA256 11
8.1 Idea . 11

vi

8.2 Implementation . 11
8.3 Experiment . 11
8.4 Results . 11
8.5 Conclusion . 12

Chapter IX: Experimenting with Elliptic Curve Cryptography 13
9.1 Idea . 13
9.2 Implementation . 13
9.3 Experiment . 13
9.4 Results . 13
9.5 Conclusion . 13

Chapter X: Exploring Factoring Through an Experimental Approach 14
10.1 Idea . 14
10.2 Implementation . 14
10.3 Experiment . 14
10.4 Results . 14
10.5 Conclusion . 14

Chapter XI: Concluding Remarks and Future Directions 15
11.1 Complexity and Model Refinement 15
11.2 Binomial Coefficients Connection 15
11.3 Future Prospects . 15
11.4 On the P vs NP Status . 15
11.5 Relationship with Entropy . 16

Appendix A: A Rigorous Proof of Statement 1. 17
A.1 Constructing an Ideal Model on a Countable Dense Subset of R𝑛 . . 17
A.2 Deriving `−density . 17
A.3 The Function 𝑓 with Respect to 𝐺 18

Appendix B: Implications of 𝑃 ∼ 𝑁𝑃 . 20

1

C h a p t e r 1

INTRODUCTION

This chapter outlines the notations and conventions employed within this article.

1.1 Common Notations
By the American Convention, N represents positive integers, excluding zero. R
stands for the set of real numbers, while C denotes the set of complex numbers.
R𝑛 signifies the set of vectors containing 𝑛 real numbers. Additionally, due to the
frequent use of the modulo two operator in various formulas, it will be introduced as
expressed in most programming languages: 𝑥%2 = 1𝑥∈2Z+1 = 1𝑥 is odd where 𝑥 ∈ Z.

1.2 Definition of a Logical Condition Operator
Let 𝐴(𝑥) ∈ {⊤,⊥} denote a property of the variable 𝑥. In this article, the following
notation will be employed:

[𝐴(𝑥)] = 1𝐴(𝑥)=⊤ = 1 − 1𝐴(𝑥)=⊥

Here, ⊤ represents an always true tautological statement, and⊥ represents an always
false contradictory statement.

1.3 Definition of a Densely Countable Subset of R𝑛

Consider 𝐸 ⊊ R𝑛 as a countable subset ofR𝑛. Within this article, 𝐸 is deemed dense
within R𝑛 if we can present a Cauchy sequence of elements from 𝐸 that converges
to any element 𝑥 ∈ R𝑛. This characteristic is implied by the following assertion:

∀𝑥 ∈ R𝑛, inf
𝑒∈𝐸

∥𝑥 − 𝑒∥ = 0

1.4 Definition of Algorithm Complexity
In the analysis of a generic cost-function Global Optimization Algorithm, establish-
ing a foundational measure for the algorithm’s complexity becomes essential. The
assumption made here is that the evaluation of the cost function 𝑓 is𝑂 (1), meaning
that the number of operations is bounded by a constant value. Consequently, an
upper bound on the overall algorithm complexity amounts to 𝑂 (2𝑛/2) evaluations
of the cost function.

2

C h a p t e r 2

OVERVIEW OF STATE-OF-THE-ART GLOBAL
MAXIMIZATION ALGORITHMS

This chapter presents the fundamental principles that can be employed to address
the general task of maximizing a cost function, utilizing strategies of increasing
complexity. It is an overview of generic optimization techniques, it is not exhaustive.

2.1 Gradient Descent: A Greedy Approach to Local Minima
Gradient descent stands as a widely employed optimization method that aims to
locate local minima within a given cost function. Its process involves iterative
movement in the direction of the most rapid decrease in the function’s value. Nev-
ertheless, it can encounter difficulties in escaping local minima.

2.2 Local Search: Enhancing Local Minima Solutions
Local search algorithms endeavor to enhance existing solutions by exploring neigh-
boring options within a specific range. This strategy is particularly advantageous
for refining solutions generated through other techniques, such as gradient descent.
The local search approach aids in avoiding local minima and elevating the overall
quality of the solution.

2.3 Simplex Algorithm: A Swift Alternative to Gradient Descent
The simplex algorithm[4] serves as a linear programming method geared towards
optimizing linear functions under linear constraints. In contrast to gradient descent,
which operates on continuous functions, the simplex algorithm is ideally suited for
discrete optimization problems. It efficiently explores feasible solutions confined
within a convex polytope.

2.4 MAXSAT Solvers: NP-Hard Complexity, Approximation Strategies
MAXSAT solvers[10][11][12] are tailored for addressing NP-hard optimization
problems, wherein the objective is to discover assignments to Boolean variables
that maximize the count of satisfied clauses in a Boolean formula. These solvers
make use of diverse heuristics and approaches, frequently integrating local search
or approximation algorithms. They focus on obtaining approximate solutions[12].

3

C h a p t e r 3

W AND GLOBAL MAXIMIZATION OF A GIVEN COST
FUNCTION

This chapter presents a MAXSAT Optimization model involving positively-real-
weighted clauses for a given cost function. We denote the set of such functions as
W = {𝑤 : 𝑤(𝑥) = 𝑐 +∑𝑀

𝑖=1 𝑤𝑖𝐶𝑖 (𝑥)}.

3.1 Introduction ofW
Consider a subset 𝐶 of non-zero integers within the range [−𝑛, 𝑛], denoted as
𝐶 ⊂ {−𝑛, 1 − 𝑛, . . . ,−1, 1, . . . , 𝑛 − 1, 𝑛}. We refer to 𝐶 as a clause, represented
as 𝐶 : 𝑥 ↦→ {0, 1}. Utilizing the binary decomposition of 𝑥 ∈ N, such that
𝐵𝑥 = {𝑙1, . . . , 𝑙𝑚} and 𝑥 =

∑𝑚
𝑘=1 2𝑙𝑘−1, we can state that:

𝐶 (𝑥) = 1 −
∏
𝑙∈𝐶

([𝑙 < 0] [−𝑙 ∈ 𝐵𝑥] + [𝑙 > 0] [𝑙 ∉ 𝐵𝑥])

𝐶{−1,2} (𝑥) = 1 − [1 ∈ 𝐵𝑥] [2 ∉ 𝐵𝑥]

In simpler terms, a clause (a finite subset of non-zero integers) is satisfied if and only
if either one of its positive elements (𝑙 > 0) is present in 𝐵𝑥 , or one of its negated
elements (𝑙 < 0) is not negated in 𝐵𝑥 .

W =

{
𝑤 : 𝑤(𝑥) = 𝑐 +

𝑀∑︁
𝑖=1

𝑤𝑖𝐶𝑖 (𝑥), 𝑐 ∈ R, 𝑤𝑖 > 0, 𝐶𝑖 ⊂ Z ∩ [−𝑛, 𝑛]
}

3.2 Maximization of 𝑤 ∈ W: Theoretical Background
This section introduces a Python implementation of the "solve" function, which
aims to efficiently solve a cost function 𝑤 ∈ W. The "problem" parameter is an
array of pairs [𝑤𝑖, 𝐶𝑖], where 𝐶𝑖 = [𝑙1, 𝑙2, . . .] is an array, and 𝑤𝑖 > 0 is a positive
real weight. The algorithm operates similarly to an 𝐴∗ search for pathfinding. It
utilizes the "solution" variable and compares weights to the current average score.
With a limited number of considered variables, it efficiently explores the solution
space, seeking better-than-average solutions. Importantly, the "shuffle(problem)"
action before each iteration introduces shuffling of the pairs (weight, clause), aiding
in escaping local minima in most cases.

4

3.3 Maximization of 𝑤 ∈ W: Code Implementation
The subsequent code is a generalized Python implementation of the local search
approach used in this article.

from random import choice, shuffle

def solve(problem, n=20, iterations=100):

solution = [0 for k in range(n+1)]

for it in range(iterations):

shuffle(problem)

score = [0]

for pair in problem:

if sum((abs(x) * solution[abs(x)] == x for x in pair[1])) > 0:

score = [pair[0]] + score

else:

undefined = [x for x in pair[1] if solution[abs(x)] == 0]

if len(undefined) > 0:

x = choice(undefined)

solution[abs(x)] = int(x / abs(x))

score = [pair[0]] + score

elif sum(score) / len(score) > pair[0]:

score = [-pair[0]] + score

else:

x = choice(pair[1])

solution[abs(x)] = 0

score = [0] + score

return solution

3.4 Maximization of 𝑤 ∈ W: Remarks
The provided code implements a local search-based algorithm for solving optimiza-
tion problems. It takes a problem defined as a list of clauses (pairs of a score and
a list of variables) and strives to discover a solution that maximizes the total score
of satisfied clauses. Through a set number of iterations, the algorithm shuffles the
problem clauses, makes decisions to enhance the solution based on clause satis-
faction and associated scores, and thereby attempts to find better solutions, while
acknowledging the potential of reaching local maxima. The "shuffle" step before
each iteration is especially instrumental in preventing convergence to local minima.

5

C h a p t e r 4

BOOLEAN DISSECTION OF SEARCH SPACE

This chapter delves into the exploration of Boolean variables within a set 𝐸 taken
from the domains N,R,C,R𝑛. A boolean variable is defined as a function 𝑏 : 𝐸 →
{0, 1}. We will differentiate the polarity of 𝑥 ∈ 𝐸 , denoted as 𝑏 : 𝑥 ↦→ [𝑥 < 0].
Another representation of a Boolean variable is linked to a power of two: 𝑏 : 𝑥 ↦→
⌊𝑥/2𝑘⌋%2, where the ·%2 operation calculates the remainder modulo two, and | · |
represents the absolute value.

4.1 Boolean Breakdown of N
Any natural integer can be expressed through the following formula. By considering
𝑥/2𝑘 < 1 for sufficiently large 𝑘 , this series expression always results in a finite sum
over N.

𝐼N(𝑥) = 𝑥 =
∞∑︁
𝑘=0

2𝑘 (⌊𝑥/2𝑘⌋%2)

4.2 Boolean Breakdown of R
The depiction of a real number is slightly distinct, given its potential for infinite
floating point digits (e.g., 𝜋). The sign of the real number can be efficiently captured
using the trick 1 − 2[𝑥 < 0] = (−1) [𝑥<0] .

𝐼R(𝑥) = 𝑥 = (1 − 2[𝑥 < 0])
∑︁
𝑘∈Z

2𝑘 (⌊|𝑥 |/2𝑘⌋%2)

4.3 Boolean Breakdown of C
The complex plane C is approached by distinguishing its real value ℜ(𝑧) and
imaginary value ℑ(𝑧), employing the formula from R simultaneously.

𝐼C(𝑧) = 𝑧 =
∑︁
𝑘∈Z

2𝑘 (1−2[ℜ(𝑧) < 0]) (⌊|ℜ(𝑧) |/2𝑘⌋%2)+𝑖2𝑘 (1−2[ℑ(𝑧) < 0]) (⌊|ℑ(𝑧) |/2𝑘⌋%2)

4.4 Boolean Breakdown of R𝑛

For a generalization to R𝑛, where 𝑛 ≥ 1, variable differentiation is achieved through
(1𝑖= 𝑗)1≤ 𝑗≤𝑛 = (0, . . . , 0, 1, 0, . . . , 0), while the underlying principle remains unal-
tered.

𝐼R𝑛 (𝑥1, . . . , 𝑥𝑛) = (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑘∈Z

2𝑘
𝑛∑︁
𝑖=1

(1𝑖= 𝑗)1≤ 𝑗≤𝑛 (1−2[𝑥𝑖 < 0]) (⌊|𝑥𝑖 |/2𝑘⌋%2)

6

C h a p t e r 5

A UNIVERSAL EXPRESSION FOR 𝑓 : N→ R

Within this chapter, we will establish the proposition that any function mapping
natural integers to real numbers can be unfolded as a series involving weighted
products of Boolean variables over N.

5.1 An Assortment of Boolean Variables on N
Consider an integer 𝑙 ≥ 1:

𝑏𝑙 : 𝑥 ↦→ ⌊𝑥/2𝑙−1⌋%2

For all 𝑥 ∈ N, the following relation holds:

𝑥 =
∑︁
𝑙∈N

2𝑙−1𝑏𝑙 (𝑥)

Moreover, for every 𝑙 ∈ N:
𝑏𝑙 (0) = 0

5.2 A Proposed Formula 𝑔 : N→ R

𝑔 : 𝑥 ↦→
|𝑝 |<∞∑︁
𝑝⊂N

𝑎𝑝

∏
𝑙∈𝑝

𝑏𝑙 (𝑥)

Here, for all finite subset 𝑝 of natural integers:

𝑎𝑝 =
∑︁
𝑞⊆𝑝

(−1) |𝑝 |−|𝑞 | 𝑓 ©«
∑︁
𝑙∈𝑞

2𝑙−1ª®¬
5.3 A Key Outcome in Discrete Analysis

∀𝑥 ∈ N, 𝑔(𝑥) = 𝑓 (𝑥)

The significance of this outcome lies in the fact that 𝑔(0) = 𝑓 (0) implies, through
induction on (𝑎𝑝)𝑝, that the binary decomposition of the function 𝑥 ↦→ 𝑓 (𝑥) is
explicitly tied to the binary decomposition of 𝑥 ∈ N.

7

C h a p t e r 6

APPROXIMATING C(C,R)

This chapter delves into an approximation method for the function space C(C,R).

6.1 Boolean Variables of the Complex Plane
We assume your familiarity with 𝐼C, and we will now introduce Boolean variables
for C as follows:

• For 𝑙 = 1, 𝑏𝑙 (𝑧) = [ℜ(𝑧) < 0]

• For 𝑙 = 2, 𝑏𝑙 (𝑧) = [ℑ(𝑧) < 0]

• For 𝑙 > 2, and 𝑙 ≡ 3 mod 4, 𝑏𝑙 (𝑧) = ⌊|ℜ(𝑧)/2 𝑙−3
4 |⌋%2

• For 𝑙 > 2, and 𝑙 ≡ 0 mod 4, 𝑏𝑙 (𝑧) = ⌊|ℑ(𝑧)/2 𝑙−4
4 |⌋%2

• For 𝑙 > 2, and 𝑙 ≡ 1 mod 4, 𝑏𝑙 (𝑧) = ⌊|ℜ(𝑧)/2 1−𝑙
4 |⌋%2

• For 𝑙 > 2, and 𝑙 ≡ 2 mod 4, 𝑏𝑙 (𝑧) = ⌊|ℑ(𝑧)/2 2−𝑙
4 |⌋%2

6.2 Dense Countable Subset 𝐹 within C
Consider the subset 𝐹 defined as:

𝐹 = {𝑧 ∈ C, |{𝑙 ∈ N : 𝑏𝑙 (𝑧) = 1}| < ∞}

To make it countable, define 𝑧𝑘 as the unique value that satisfies:∑︁
𝑙∈N

2𝑙−1𝑏𝑙 (𝑧𝑘) = 𝑘

6.3 Random Variable 𝑋 on 𝐹
Let 𝑋 be a random variable overN. We create 𝑍 = 𝑧𝑋 , which becomes a new random
variable over 𝐹. Notably, 𝐹 is both countable and densely distributed across the
complex plane, rendering 𝑍 a discrete random variable over the complex plane.

6.4 Upper Bound on Approximation Failure Probability
It can be demonstrated that regardless of the random variable 𝑍 on 𝑍 (Ω) ⊂ 𝐹 ⊂ C,
even for any Y > 0 representing the desired approximation precision, and any

8

𝛿 > 0 serving as an upper bound for the probability of approximation failure
(| 𝑓 (𝑍) − 𝑔(𝑍) | > Y), the following holds:

∀Y, 𝛿 > 0, inf
𝑁∈N

Pr(| 𝑓 (𝑍) − 𝑔(𝑍) | > Y) < 𝛿

Here, 𝑔(𝑧) is parametrized by 𝑁:

𝑔(𝑧) =
max 𝑝≤𝑁∑︁
𝑝⊂N

𝑎𝑝

∏
𝑙∈𝑝

𝑏𝑙 (𝑧)

Where for all finite subset 𝑝 of natural integers:

𝑎𝑝 =
∑︁
𝑞⊆𝑝

(−1) |𝑝 |−|𝑞 | 𝑓
(
𝑧∑

𝑙∈𝑞 2𝑙−1

)
Intuitively, the proof’s core idea is as follows:

𝑁 > log2(𝑘) ⇒ 𝑔(𝑧𝑘) =
∑︁

𝑝⊂{𝑙1,...,𝑙𝑚}
𝑎𝑝 = 𝑓 (𝑧𝑘)

Given
∑𝑚
𝑖=1 2𝑙𝑖−1 = 𝑘 , and utilizing the binomial coefficient property:

(1 − 1) |𝑝 | =
|𝑝 |∑︁
𝑘=0

(
|𝑝 |
𝑘

)
(−1)𝑘 = 1𝑝=∅

Once this equality holds for any 𝑘 ∈ N, one can isolate 𝐺𝛿 ⊂ 𝐹 ⊂ C, a finite subset
of 𝐹, as follows:

Pr(𝑍 ∈ 𝐺𝛿) > 1 − 𝛿

Choosing 𝑁∗ = max𝑧𝑘∈𝐺 𝛿
𝑁𝑧𝑘 , where 𝑓 (𝑧𝑘) = 𝑔(𝑧𝑘) for all 𝑧𝑘 ∈ 𝐺𝛿, the probability

of approximation failure converges to zero, irrespective of the random variable 𝑋
on N, and the random variable 𝑍 = 𝑧𝑋 over 𝐹 ⊂ C.

9

C h a p t e r 7

APPROXIMATING COMPLEX ROOTS OF C[𝑋]

7.1 Idea
To extend the boundaries of this theory, specifically in the context of finding roots[5],
which essentially involves maximizing 𝑧 ↦→ −|𝑃(𝑧) | across the complex plane, we
propose the following approach: assuming you have a complex root for a given
polynomial 𝑃 expressed in summation form, approximate the coefficients up to
degree deg(𝑃) − 1 of the Taylor series of 𝑃 at zero, divided by one of the output
complex roots, 𝑧0. This results in 1

𝑧−𝑧0𝑃(𝑧) ≈ 𝑐0 + 𝑐1𝑧 + 𝑐2𝑧
2 + 𝑐3𝑧

3 + 𝑐4𝑧
4. By

increasing the degree of the polynomial, it can be argued that with a sufficient 𝑁 , as
detailed in Chapter 3, the computation will avoid local maxima that are not global
maxima (roots).

For the computation of 𝑐𝑘 , you require (𝑓 (𝑙𝜖))0≤𝑙≤𝑘 where 𝑓 (𝑧) = 1
𝑧−𝑧0𝑃(𝑧) and 𝜖 =

0.001 yields satisfactory outcomes. Subsequently, compute 𝑓1(𝑙𝜖) = 𝑓 ((𝑙+1)𝜖)− 𝑓 (𝑙𝜖)
𝜖

to generate (𝑓1(𝑙𝜖))0≤𝑙≤𝑘−1. This process can be iterated until 𝑓𝑘 (0) ≈ 𝑘!𝑐𝑘 .

7.2 Implementation
I have developed several Python prototypes as well as a C implementation of this
algorithm based on Chapters 1-3. The source code is accessible on GitHub.

7.3 Experiment
The experiment involved computing the roots of 𝑃(𝑋) = 𝑋5+1+2𝑖+ (3+4𝑖)𝑋 + (5+
6𝑖)𝑋2 + (7 + 8𝑖)𝑋3 + (9 + 10𝑖)𝑋4, utilizing the generic cost function 𝑧 ↦→ −|𝑃(𝑧) |.

7.4 Results
Within a computational timeframe of 60 seconds, the algorithm produced a model
𝑄(𝑋) ≈ 𝑃(𝑋) where𝑄(𝑋) = (𝑋 +8.276+ 𝑖9.961) (𝑋 −0.085− 𝑖0.677) (𝑋 +0.490+
𝑖0.358) (𝑋 + 0.565 − 𝑖0.305) (𝑋 − 0.138 + 𝑖0.633). The effectiveness of the model
was assessed through visualization.

10

𝑧 ↦→ |1 − 𝑃(𝑧)/𝑄(𝑧) |

7.5 Conclusion
Although the algorithm is generally effective, some challenges remain. Local search
and gradient descent sometimes struggle with poles, where they may not achieve
optimal performance. However, the approximation is nearly flat and close to 𝑧 ↦→ 0
except for the poles. The use of local search on the cost function has enhanced
algorithm performance. Given limited computational resources, the algorithm might
not always avoid local maxima that aren’t global maxima. The incorporation of
successive derivatives at 𝑧 ≈ 0 yields a factorized polynomial𝑄(𝑋) that adequately
represents the behavior of the

∑
form 𝑃(𝑋).

11

C h a p t e r 8

EXPERIMENTING WITH THE CRYPTOGRAPHIC HASH
FUNCTION SHA256

8.1 Idea
Given that the algorithm operates on polynomials, I decided to explore whether it
was possible to maximize the variance of leading zeros in a batch of 1200 hashes
using a cryptographic hash function[7] like SHA256[6]. The concept involved
applying a mask to the binary representation of the hash in such a way that when the
mask bit was set to 1 and the corresponding hash bit was also set to 1, all the bits
to the right of that position would be flipped. The hashing process used a ’1’-’0’
string of 50 randomly-generated characters.

8.2 Implementation
I developed a Colab notebook and implemented a controlled experiment to compare
different strategies and assess which one performed best. The aim was to determine
if a strategy could indeed enhance the variance in the number of leading zeros across
a representative batch of 1200 hashes.

8.3 Experiment
The analysis yielded a strategy represented as [0,-,-,-,-,-,+,+,0,0,0,0,0,0,0,0]. The
experiment involved simulating this strategy (𝑋1), a strategy that applies the mask
at random when zero (𝑋2), and several control strategies: random strategy (𝑌1),
all-zero strategy (𝑌2), and all-one strategy (𝑌3).

8.4 Results
After generating 50 batches of 1200 hashes each, the ratio E

(
2𝑋
𝑋+𝑌

)
≈ 1.02 was

obtained, where 𝑋 = 𝑋1 + 𝑋2 represents the strategy and 𝑌 =
2(𝑌1+𝑌2+𝑌3)

3 denotes the
control.

When considering the variance of leading zeros:

• 1 Golden Ticket 2𝑋/(𝑌 + 𝑋) ≈ 1.0256280925848993

• 2 Golden Ticket 2𝑋/(𝑌 + 𝑋) ≈ 1.0446854793002325

12

• 3 Golden Ticket 2𝑋/(𝑌 + 𝑋) ≈ 1.0376863578667561

When considering the maximum of leading zeros:

• 4 Curiosity 2𝑋/(𝑌 + 𝑋) ≈ 0.9613259668508288

• 5 Golden Ticket 2𝑋/(𝑌 + 𝑋) ≈ 1.1475409836065573

• 6 Golden Ticket 2𝑋/(𝑌 + 𝑋) ≈ 1.054945054945055

• 7 Curiosity 2𝑋/(𝑌 + 𝑋) ≈ 0.9866666666666667

8.5 Conclusion
Determining whether the results are significant is challenging, but if the 2% dif-
ference persists at a larger scale, it could potentially have financial implications.
Notably, Bitcoin[9] mining relies on conditions like SHA256(SHA256(block +
nonce)) ≤ 2256−𝐷 , where 𝐷 is the difficulty. However, applying the experiment’s
strategy to Bitcoin mining[8] is not straightforward, as miners have limited control
over the output of SHA256(block + nonce).

13

C h a p t e r 9

EXPERIMENTING WITH ELLIPTIC CURVE CRYPTOGRAPHY

9.1 Idea
Elliptic Curve Cryptography (ECC)[3] involves finding integer solutions 𝑥 and 𝑦
that satisfy the equation 𝑦2 ≡ 𝑥3 + 7 mod 𝑝, where 𝑝 is a large prime. Currently,
breaking ECC relies on brute-force attempts to find suitable (𝑥, 𝑦) pairs in Z2.

9.2 Implementation
The same SHA256 algorithm used earlier was adapted to work with Elliptic Curve
Cryptography.

9.3 Experiment
The goal was to find integer solutions (𝑥, 𝑦) that satisfy the ECC equation, with a
chosen prime 𝑝 = 123863. The cost function to be maximized was defined as:

(𝑥, 𝑦) ↦→ −min((𝑦2 − 𝑥3 − 7)%𝑝, 𝑝 − (𝑦2 − 𝑥3 − 7)%𝑝)

9.4 Results
During the experiment, a pair (−207, 220) was discovered as a possible solution.
This result was achieved after evaluating the cost function around 105 times and
considering around 220 candidate solutions.

9.5 Conclusion
While Elliptic Curve Cryptography is not immune to this algorithm, the prime
number used in this experiment was relatively small (around 106). In practical
ECC systems, prime numbers of the order of 256 bits (approximately 1077) are
commonly employed. Given that the algorithm’s complexity is 𝑂 (

√
2𝑛) for an

𝑛-bit solution space that encodes (𝑥, 𝑦) ∈ Z2, a supercomputer might utilize this
approach to exploit ECC, although ECC’s strength typically lies in the use of large
prime numbers for which brute-force attacks are infeasible[7].

14

C h a p t e r 10

EXPLORING FACTORING THROUGH AN EXPERIMENTAL
APPROACH

10.1 Idea
Factoring[1][2] involves finding two prime numbers 𝑝1 and 𝑝2 such that their product
equals 𝑁 , i.e., 𝑁 = 𝑝1 · 𝑝2.

10.2 Implementation
The same approach used in a previous Colab notebook was employed. A cost
function was formulated, aiming to minimize the distance of 𝑁 to the nearest
multiple of 𝑝1.

10.3 Experiment
The experiment was conducted on a relatively small composite number 𝑁 =

1488391 ≈ 107. The goal was to determine if prime factors could be extracted
from the cost function:

𝑥 ↦→ −min(𝑁%𝑥, 𝑥 − 𝑁%𝑥)

10.4 Results
Using a model with 4096 = 212 candidates, and after 376 evaluations of the cost
function, the prime factors 1217 and 1223 were successfully identified, validating
the approach.

10.5 Conclusion
The experiment suggests that the factoring problem could be addressed using this
algorithm. However, it’s important to note that the prime number considered in this
experiment was relatively small, around 107. In real-world factoring challenges, such
as those in RSA, numbers of the order of 256 bits (approximately 1077) are commonly
used. The algorithm’s complexity of𝑂 (

√
2𝑛) in a 𝑛-bit solution space implies that a

supercomputer might exploit this approach, although, for larger numbers, dedicated
factoring methods are more practical[7].

15

C h a p t e r 11

CONCLUDING REMARKS AND FUTURE DIRECTIONS

11.1 Complexity and Model Refinement
The experiments described in this work have followed a consistent principle: gen-
erating random samples of 𝑎𝑝 values, where 𝑝 represents finite subsets of natural
integers. By considering the sign of 𝑎𝑝 and transforming 𝑎𝑝

∏
𝑙∈𝑝 𝑏𝑙 into positively-

real-weighted clauses, the problem is converted into a maximization task in various
domains like N, Z2, R, C, and R𝑛. However, the sample’s representativeness is
crucial for the effectiveness of the approach. A larger sample, possibly involving
larger |𝑝 |, is required to capture the essence of the maximization problem accurately.

11.2 Binomial Coefficients Connection
Exploring the relationship with binomial coefficients reveals that most values tend
to lie within the range

[1−Y
2 , 1+Y

2
]
, as suggested by the study of the binomial distri-

bution with a success probability of 1/2. By constraining |𝑝 | < 𝐾 , the algorithm’s
complexity can be reduced to 𝑂 (2𝐾

(𝑛
𝐾

)
). However, truncating the instance may

compromise representativeness and the attainment of global optima. The current
work employed a uniform random sample of {0, 1}𝑛, with a maximum sample size
of 1200 𝑎𝑝 values computed.

11.3 Future Prospects
As the author holds a position at Aplo, there is an intention to further develop
and extend this research based on the promising outcomes. The next step involves
conducting large-scale experiments on practical business problems, which can be
quantified into suitable cost functions for maximization. This approach’s potential
for optimization and problem-solving warrants the exploration of more significant
real-world challenges.

11.4 On the P vs NP Status
In 1971, Cook’s theorem established the equivalence of a class of computing prob-
lems called NP-Complete. Any NP-Complete problem can be formalized as SAT or
Boolean Satisfiability[11][13]. The theoretical complexity is𝑂 (_𝑛) with _ ∈ (1, 2].
Using the presented method in this article on the number of satisfied clauses for a

16

given solution 𝑥, one can use the proposed framework to drive down the complexity
of maximizing this quantity. 𝑃 ≠ 𝑁𝑃 would imply that there is no random subset
of 𝑎𝑝 with |𝑝 | < 𝐾 that leads to a global maximum of the quantity (solution to the
instance). On the flip hand, 𝑃 = 𝑁𝑃 if no matter this quantity we can derive in
polynomial time a 𝑤 ∈ W a model of the cost function, that we can exploit to figure
out a solution to the problem in polynomial time.

𝑥 ↦→
(256
⌊𝑥⌋

)
To efficiently tackle 256-bit encryption, setting 𝐾 = 64 would avoid computing the
center values that would take an exponential computation time. The main question
that remains, is about the representativeness of leftmost elements 𝑥 < 64 on the
overall 2256 coefficients, centered at 𝑥 = 128.

11.5 Relationship with Entropy
Let 𝑥∗ be the unique solution to the cost function 𝑓 : 𝑥 ↦→ 1𝑥=𝑥∗ . The algorithm,
will not be able to leverage the different values of the cost function to determine
the solution. Such a cost function has an almost zero Entropy and a 2𝑛−1 expected
complexity under the assumption that 𝑥∗ can be depicted by a 𝑛−bit solution vector.
From a computational standpoint, it is analogous to a quick sort algorithm that
performs in 𝑂 (𝑛3) in the worst-case scenario.

17

A p p e n d i x A

A RIGOROUS PROOF OF STATEMENT 1.

The primary objective of this appendix is to establish a rigorous proof for the
following proposition:

sup
𝑋∈X

inf
𝑤∈W

Pr(𝑤(𝑋) ≠ 𝑓 (𝑋)) = 0

A.1 Constructing an Ideal Model on a Countable Dense Subset of R𝑛

Let 𝑛 be a natural number, and consider 𝑥 ∈ R𝑛 as a vector comprising 𝑛 real
numbers. The set C(R𝑛,R) denotes the collection of continuous functions. Define
W as the set of weighted MAXSAT functions in the form 𝑤 = 𝑐 + ∑

𝑤𝑖𝐶𝑖, where
the Clauses 𝐶𝑖 consist of the following Boolean variables on R𝑛:

• 𝑏𝑖,𝑘 : 𝑥 ↦→ ⌊|𝑥 · (1𝑖= 𝑗) 𝑗 |2𝑘⌋%2, where 𝑖 ∈ N ∩ [1, 𝑛] and 𝑘 ∈ Z

• 𝑏𝑖 : 𝑥 ↦→ [𝑥 · (1𝑖= 𝑗) 𝑗 < 0], where 𝑖 ∈ N ∩ [1, 𝑛].

By introducing the set 𝐸 , which encompasses any finite set of (𝑖) and (𝑖, 𝑘) indices
of the Boolean variables, the formula below can be considered:

𝑔 : 𝑥 ↦→
∑︁
𝑝∈𝐸

𝑎𝑝

∏
id∈𝑝

𝑏id(𝑥)

On the domain {𝑥 ∈ R𝑛 : | (𝑖, 𝑘) : 𝑏𝑖,𝑘 (𝑥) = 1| < ∞}, this formula consistently yields
a finite sum that can precisely match the function’s value. This is achievable through
either exponential time construction of 2|𝑝 | or estimation methods for quicker ap-
proximations. The central concept involves sampling 2𝑀 function values, negating
𝑀 of them, and then summing these pairs. In the event of a constant function, the
contributions cancel out, yielding 𝑎𝑝 = 0.

𝑥 =

𝑛∑︁
𝑖=1

(1𝑖= 𝑗) 𝑗 (−1)𝑏𝑖 (𝑥)
∑︁
𝑘∈Z

𝑏𝑖,𝑘 (𝑥)
2𝑘

⇒ 𝑔(𝑥) = 𝑓 (𝑥)

A.2 Deriving `−density
It is crucial to acknowledge that since the function 𝑓 is continuous and perfectly
matches 𝑔 on a countable dense subset of R𝑛, what can be inferred about 𝑔 and its

18

continuity? Although it’s reasonable to assume that 𝑔 aligns exactly with the model,
a rigorous proof is needed. As an alternative, a smaller property can be derived,
indicating the `−density of the partial sum by imposing a condition |𝑘 | < 𝑁 in the
indexes of Boolean variables of 𝐸𝑁 .

𝑔𝑁 : 𝑥 ↦→
∑︁
𝑝∈𝐸𝑁

𝑎𝑝

∏
id∈𝑝

𝑏id

𝑔𝑁 serves as an estimator for 𝑓 , guaranteeing that for any discrete random variable
𝑋 : Ω → R𝑛, a finite subset𝐺 ⊂ 𝑋 (Ω) can be derived such that Pr(𝑋 ∈ 𝐺) > 1− Y.
The claim is that due to the finite number of values required to achieve 𝑋 ∈ 𝐺 with
an approximation error of Y, coupled with constructing an exact model on a finite set
of points using 𝑔𝑁 (for sufficiently large 𝑁) and the continuity of 𝑓 , a weak version
of `−density is established:

inf
𝑁

Pr(|𝑔𝑁 (𝑋) − 𝑓 (𝑋) | > 𝛿) = 0

Although not precisely `−density, the exact version can be expressed as:

inf
𝑁

Pr(𝑔𝑁 (𝑋) ≠ 𝑓 (𝑋)) = 0

This is the desired outcome.

A.3 The Function 𝑓 with Respect to 𝐺
Given a fixed subset 𝐺 and corresponding random variable 𝑋 , where 𝑋 (Ω) is
constant and can’t be changed, and we want the failure probability 𝑤(𝑋) ≠ 𝑓 (𝑋) to
be less than Y, define 𝑑𝐺 = min{∥𝑥 − 𝑦∥ : 𝑥 ≠ 𝑦, (𝑥, 𝑦) ∈ 𝐺}.

By selecting 𝑁 = | log2(𝑑𝐺) | + | log2(max{∥𝑥∥ : 𝑥 ∈ 𝐺}) |, an approximate measure
of the necessary precision to model the function emerges. Introduce 𝑓 : 𝑥 ↦→
𝑓 (proj𝐺 (𝑥)), where proj𝐺 (𝑥) represents the projection onto the finite set 𝐺 of
elements in R𝑛.

∀𝑦 ∈ 𝐺, ∥𝑥 − proj𝐺 (𝑥)∥ ≤ ∥𝑥 − 𝑦∥

For any 𝑦 ∈ 𝐺 and 𝑥 ∈ 𝐵(𝑦, 𝑑𝐺/2), 𝑓 (𝑦) = 𝑓 (𝑥) = 𝑔(𝑥) = 𝑔(𝑦).

It becomes evident that:

𝑔 : 𝑥 ↦→
∑︁
𝑝∈𝐸𝑁

𝑎𝑝

∏
id∈𝑝

𝑏id(𝑥) = 𝑐 +
𝑚∑︁
𝑖=1

𝑤𝑖𝐶𝑖 (𝑥)

19

Consider: ∨
id∈𝑝

¬𝑏id +
∧
id∈𝑝

𝑏id = ⊤

Hence, a model 𝑤 can be deduced by analyzing the sign of 𝑎𝑝 where (𝑖) and (𝑖, 𝑘)
can be part of 𝑝, with |𝑘 | < 𝑁 . This construction is achievable in a finite number of
operations.

∀(discrete)𝑋 : Ω → R𝑛,∀Y > 0, ∃𝑤 ∈ W, Pr(𝑤(𝑋) ≠ 𝑓 (𝑋)) ≤ Y

In essence, for the set of discrete random variables on R𝑛, Statement 1. always
holds.

20

A p p e n d i x B

IMPLICATIONS OF 𝑃 ∼ 𝑁𝑃

Consider a mathematical problem where a cost function can be explicitly formulated
to maximize the solution. If this cost function possesses a significant amount of
entropy, the article’s framework can be applied to optimize it. While this might
appear modest, it’s significant, as an A* approximation for the global maximum can
be achieved within a manageable number of operations.

So, where does the polynomial connection to NP problems arise? By examining the
relationship between the Boolean variables’ parameters of an NP function and its
image, a real number, a model 𝑤 can be derived and solved. Dynamic construction
of 𝑤 emerges as a preferable strategy.

The upcoming months hold significance for the field, potentially bringing changes
to the cryptography landscape.

21

BIBLIOGRAPHY

[1] Hardy, G. H., & Wright, E. M. "An introduction to the theory of numbers."
2008. Oxford University

[2] Richard Crandall & Carl Pomerance. "Prime Numbers: A Computational
Perspective." 2001. Springer.

[3] Koblitz, N. "Elliptic curve cryptosystems". 1987. Mathematics of Computation

[4] Murty, Katta G. "Linear programming" 2000. John Wiley & Sons Inc.

[5] VY Pan, AL Zheng, "New progress in real and complex polynomial root-
finding" 2011. Computers & Mathematics with Applications, 2011 - Elsevier

[6] Penard, Wouter. Van Werkhoven, Tim. "On the Secure Hash Algorithm family"
2016. staff.science.uu.nl

[7] Stallings, William. "Cryptography and Network Security: Principles and Prac-
tice." 3 May 1990. Prentice Hall. p. 165

[8] Nakamoto, Satoshi. "Bitcoin: A Peer-to-Peer Electronic Cash System." 2008.
https://bitcoin.org/bitcoin.pdf

[9] Heusser, Jonathan. "SAT solving - An alternative to brute force bitcoin mining"
2013. https://jheusser.github.io/2013/02/03/satcoin.html

[10] Marques-Silva, J., & Sakallah, K. (Eds.). "SAT 2009: 12th International
Conference on Theory and Applications of Satisfiability Testing (Vol. 5584)".
2009. Springer.

[11] Biere, Armin (Ed.). Handbook of Satisfiability. IOS Press, 2009.

[12] H. Zhang and M. Stickel. "An efficient algorithm for unit-propagation" 1996. In
Proceedings of the Fourth International Symposium on Artificial Intelligence
and Mathematics.

[13] Cook, Stephen. "The Complexity of Theorem-Proving Procedures." In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, 1971.
pp. 151-158.

