\neg SAT A Dummy Approach to P vs NP

Charles Dana, H23, Discrete Mathematician

February 21, 2024

Abstract

In this article, will try and introduce a framework for SAT Solving. Under the assumption that the SAT Instance φ is hard to solve, we will try to generate the opposite SAT Instance $\vartheta = 1 - \varphi$. A ϑ SAT Instance by definition is the intersection of the negation of partial assignments of φ .

$$\neg (\land \lor) = \lor \land \neg$$

What is an AND (\wedge) statement, if not the assertion that the variables are assigned. What is an OR (\vee) statement, if not an AND Statement alongside with dummy variables. How many dummy variables do you need to describe 2^n OR assertions? *n* suffice.

1 Introduction

1.1 Introducing a simple φ Instance

p cnf 2 2 1 -2 0 -1 0

 $\varphi=\{(0,0)\}\times\{0,1\}^{\mathbb{N}}$

1.2 Introducing a simple $\vartheta = \neg \varphi$ Instance

$$\begin{split} \vartheta &= \{(1,1),(0,1),(1,0)\} \times \{0,1\}^{\mathbb{N}} \\ \texttt{p cnf 2 1} \\ \texttt{1 2 0} \end{split}$$

Technically, this is very elegant, because as we can see the negation of the unique clause gives the unique solution, without using dummy variables. But rest assured, a SAT Instance is way more complex than this.

But let's not cheat and use 3 as a dummy variable.

p cnf 3 3 -1 3 0 2 3 0 1 -3 0 $\vartheta = \{(1, 1, \cdot), (0, 1, \cdot), (1, 0, \cdot)\} \times \{0, 1\}^{\mathbb{N}}$ This was made possible without relying on previous knowledge on the initial φ solution set, and so long you ignore the assignation of x_3 , the created instance is isomorphic to $\neg \varphi$. If you are being smart, you will not use one dummy variable per clause, but rather $\log(m)$ dummy variables, where the assertion contradiction is to be made on the remainder.

Proposition Let φ be a K-SAT instance with n variables and m clauses. There exists a SAT instance ϑ with $n + \lceil \log(m) \rceil$ variables and at most $2^{\lceil \log Km \rceil}$ clauses, where:

```
\varphi = \neg \vartheta
```

Proof By python code.

```
def reversat(SAT, show=False):
if show:
     print(SAT)
VARS = max((abs(x) for clause in SAT for x in clause))
VTH = []
NUM_CLAUSES = len(SAT)
m = 1
while 2**m < NUM_CLAUSES:
    m = m + 1
for idx in range(len(SAT)):
     clause = SAT[idx]
     for 1 in clause:
         bnr = "0" * (m - len(bin(idx).replace("0b", ""))) + bin(idx).replace("0b", "")
         VTH += [[-1] + [(VARS + k + 1) * [-1,1][int(bnr[k])] for k in range(len(bnr))]]
idx = len(SAT)
while idx < 2**m:
     bnr = "0" * (m - len(bin(idx).replace("0b",""))) + bin(idx).replace("0b", "")
     VTH += [[(VARS + k + 1) * [-1,1][int(bnr[k])] for k in range(len(bnr))]]
     idx += 1
if show:
     print(VTH)
return VTH
```