
AEON
A DUMMY APPROACH TO P=NP THROUGH SAT

CHARLES DANA, DISCRETE MATHEMATICIAN, H24

Abstract. Let L be a subset of {0, 1}N, there exists four operators namely
AND OR ELSE NOT , that suffice to describe a SAT instance φ that follows:

φ(X) = 1⇔ X ∈ L
It can be proven by recursion on the alphabet defined by L. This only applies if L
is defined on a finite number of variables, ie: L = L×{0, 1}N where L ⊂ {0, 1}n.
Furthermore, it will generate what we call dummy variables, |l| > n, which
complexify the restitution.

Contents

1. What is an AOEN? 2
1.1. Prerequisites 2
1.2. Claim 2
1.3. Claim 2
1.4. Claim 2
1.5. Claim 2
1.6. Claim 2
1.7. Claim 2
2. What is the purpose of an AOEN 2
2.1. Theorem of lesser evil 3
3. Is there a mathematical proof? 3
4. Proofs. 3
4.1. Proof of the prerequisite 3
4.2. Proof of Claim 4
4.3. Proof of Claim 4
4.4. Proof of Claim 4
4.5. Proof of Claim 4
4.6. Proof of Claim 4
4.7. Proof of Claim 4

1

2 CHARLES DANA, DISCRETE MATHEMATICIAN, H24

1. What is an AOEN?

You have a list of statements in the form {T/F} × {+,−}n. The question you
are asking is what’s the easiest way to describe these statements (T/F) out of the
context (+,-). For what I would answer recursively. It suffice to be capable of
reducing an AEON to a SAT instance, if everything contained from within the
AEON is to be expressed as a SAT instance.

1.1. Prerequisites. What is a SAT instance? (Mm,n+d(−1, 0, 1), n), which is to
say a collection of m clause on n dependent variables, with d dummy variables.

1.2. Claim. There exists a unique solution set on {0, 1}n associated with any
given SAT instance.

1.3. Claim. There is a relationship of equivalence, built on the computation of
the dummy variables that encode the truth statement of every assertion.

1.4. Claim. Any Given AOEN is a SAT Instance, with dummy variables.

1.5. Claim. If P 6= NP , there are AOEN that will not be computable as solvers
will have exponential complexity on the number of dummy variables.

1.6. Claim. If P = NP , there is an algorithm that reduces strictly the number
of clause of an equivalent SAT instance, in its description of what it is true, in
polynomial time.

1.7. Claim. There exists promising prototypes that will solves and reduce cryp-
tography to a simplistic problem. But in the meantimes fully encrypted, publicly
shared information will be made possible.

2. What is the purpose of an AOEN

Suppose you have a 0-1 that is both deterministic, and reliable. You can, using
an AOEN associate the result of your boolean, to a SAT variables. Which means,
being apart of an AOEN. But Because by nature AOEN is SAT, there will be a
logic instance, that will fit perfectly your training data.

Suppose you have a model with a signal t/f that will match or not the language
L solution set.

Signal t f
T tT fT
F tF fF

You wish to diagonalise this matrix, ie: Maximizing (tT + fF)2 − (fT + tF)2.
Remember (T/F) is your training signal. So you compute your M2(N) scoring
matrix. And you check for fT , so you subcategorize on one of these subsets B
that contains them, and use the trick.

AEON A DUMMY APPROACH TO P=NP THROUGH SAT 3

2.1. Theorem of lesser evil.

A1 = (t/f)

A2 = OR(A1, (AND(NOT (A1), B)))

A2 ≥ A1

Until there are no more fT. You can force isolate the tF .

3. Is there a mathematical proof?

Yes, and it’s a good one. Assume your variables are the collection of signals
from ML, your expert gives your the best combination: You fit what you know
for the truth values of the variables, and a computer gives you an insight on if the
question you are asking is True or False. Proof by python:

def reduce(SAT):

"""

Returns a NEW instance

with the exact same Truth values set,

but a lesser or equal number of clauses.

"""

...

return NEW

def improve(AOEN):

"""

Returns self or (not self and should be self)

with a greater or equal fit score than the previous one

"""

...

return CLEVER

def transpose(AOEN):

"""

SAT with the number of variables n and the dummy variables associated.

"""

...

return SAT

4. Proofs.

4.1. Proof of the prerequisite. The prerequisite proof is that if you read the
Mm,n+d({−1, 0, 1}) matrix you obtain a unique sat instance of m clause. Both
sets are in bijection, and finite on fixed m,n,d. The idea is that you only have info

4 CHARLES DANA, DISCRETE MATHEMATICIAN, H24

up to n so replacing the statements generate a unique instance on the d dummy
variables. A fast UNSAT Solver will answer the 0-1.

You might have a logic instance as an answer.

4.2. Proof of Claim. Do not fear there are solutions. Assume you can compute
till infinity on a finite world ie, no cap on the constant. Any SAT instance with
m variables is nothing but a subset L of solutions in {0, 1}n that do not care for
higher variables. Thus φ = L× {0, 1}N.

4.3. Proof of Claim. Assume that there is a signal that should be set to true,
but no remaining dummy variables allows it, without generating a contradiction.
It means that even if you knew the key, you would get a False value, thus UNSAT
is preserved. What about SAT, if it is false and should be set to true. Interesting
case and the theorem of lesser evil allows us to brute force a solution, that might
be reduce to fit and depict, the terms, like overfitting.

4.4. Proof of Claim. Assume your AOEN is its basic SAT form, ie: list of lists
of integers. Is there a universal way to compile the AOEN? The idea is to use an
AND Statements on each output.

φA ∧ φO ∧ φE ∧ φN

The compile the list of SAT instances in And it suffice to append them one to the
other. The compile of the list of SAT instances in Or, needs a chain of dummy
variable, given to problem1∨d and −d∨problem2∨(d+1) and −(d+1)∨problem3∨
(d + 2), which introduces a number of dummy variables equal to the number of
subsat instances in the Or. Else usually introduces a single SAT instance, and
can be replaced by the output of a neural network, that can be translated into
SAT. Not exists, and generates log(m) dummy variables.

4.5. Proof of Claim. If P 6= NP some instances will just be out of reach of
current solvers, because you need OR and NOT Statements to improve an existing
Solver. But it will be some relatively easy constant added per layers. Make sure
that your dummy variables remain independant.

4.6. Proof of Claim. There is a bijection on a subset of Rn+1 and any clause of
a SAT instance φ. Which means you can reduce the number of clauses by at least
one with a reliable probability. (using continuous analysis).

4.7. Proof of Claim. We are in the process of constituting Algorithmes, a venture
driven by a research lab on SAT instances. As of 2024-02-07, we have a universal
boolean classification algorithm in polynomial time. As well as a probabilistic SAT
reduction algorithm that solves instances.

