
Charles Dana, November 2023

A Universal 
Maximization Algorithm

O (2n/2)
Research Paper • X-HEC Entrepreneurs 2023-2024



Finite Sum Theorem.
Any real function with  boolean 
variables can be expressed as a 
unique finite sum of real 
coefficients multiplied by a finite 
product of boolean variables.

n

2n

∀f : {0,1}n → ℝ

∀p ⊆ {1,…, n}∃!ap ∈ ℝ

∀x ∈ {0,1}n

f(x) = ∑
p⊆{1,…,n}

ap∏
i∈p

xi



Finite Sum Theorem.
Proof. Using Lagrange Polynomials and the binary bijection between 

 and , we show that the indicator  for a given 
, can be expressed as , a polynomial evaluation of the 

natural integer expression of .  

Considering and , it becomes 
clear that the binomial formula leads to the existence of the formula no 
matter . 

Unicity comes from contradiction by subtracting two potential candidates, 
and evaluating the result for a given  that would highlight a non-zero 
coefficient. 

{0,1}n {0,1,2,…,2n − 1} 1x=y
y ∈ {0,1}n Py(x)

x

x = x1 + 2x2 + 4x3 + … + 2n−1xn xk
i = xi

f

x



Finite Sum Theorem.
What can be said about the real coefficients that compose the sum? 

 

Can we derive an estimator for the coefficients without relying on 
exponential computation? Empirical results suggests that it is possible 
in most cases, but as we will discuss in this defense, this may not be the 
most efficient approach for constituting an actionable formula for a 
significant number of boolean variables.

∀p ⊆ {1,…, n} : ap = ∑
q⊆p

(−1)|p|−|q|f ∑
i∈q

xi2i−1



The relationship with   

the set of real-weighted MAXSAT instances

𝕎



What is ?𝕎

𝕎 = {w = c +
n

∑
i=1

wiCi : wi ≥ 0}
 is the collection of positively-real weighted clauses on the boolean 

variables, plus a real constant. We can show a couple of properties on 
, using the argument:  

. This result is a consequence of the finite sum 
theorem, note that there can be multiple candidates  to model a real 
function with  boolean variables, depending on the clauses.

𝕎

𝕎 ⋁
i∈p

xi + ⋀
i∈p

¬xi = 1

{f : {0,1}n → ℝ} ⊂ 𝕎
w

n



Why using ?𝕎
 is the collection of positively-real weighted clauses on the boolean variables, plus a 

real constant. Assuming you have constructed an instance , such that 
, you can use MAXSAT logic to determine  the optimum of  

from the study of . 

MAXSAT is NP-HARD, in practice large instances can only approximate the optimum. 

There is no need for constructing the entire instance in order to start deriving an 
approximation algorithm. The idea is to sample a subset  at random. From 
binomial distribution, the expected cardinal of  is .  

Overall the algorithm has a complexity  because each iteration of the while loop 
relies on the brute-force computation of  coefficients.

𝕎
w ∈ 𝕎

∀x ∈ {0,1}n, f(x) = w(x) x* f
w

p ⊆ {1,…, n}
p

n
2

O (2n/2)
2|p|



Applications.



Maximising Generic Cost Function with  boolean variablesn
A Framework for an  on maximization problemsA*

Let , be a cost function. According to the Finite Sum Theorem, and by 
definition of  we know that there exists a model  from which we can derive  
such that  in  complexity. 
Although multiple algorithms already exist and are documented on MAXSAT, we present an 
alternative algorithm that relies on the ability to approximate efficiently  through the 
following formula. Note that because this is an approximation, it can have linear complexity, 
the tradeoff being between precision and computational efficiency.  

f : {0,1}n → ℝ
𝕎 w ∈ 𝕎 x*

f(x*) ≥ f(x) O(2n/2)

ap

∀p ⊆ {1,…, n} : ap ≈
2|p|

|H(p) | ∑
q∈H(p)

(−1)|p|−|q|f ∑
i∈q

xi2i−1 : H(p) ⊂ 𝒫(p)



Maximising Generic Cost Function with  boolean variablesn
A Framework for an  on maximization problemsA*

Let  be the  approximation of the exact coefficient . One 
possible approach to solving the model  derived, is to sample  
coefficients , ensuring that : 

 the sign is preserved. 

 the order relationship is preserved. 

 the ‘abs’ order relationship is preserved. 

We will now assume that the coefficients are sorted.

̂ap ≈ ap O(poly(n)) ap
w ∈ 𝕎 N

̂ap1
, …, ̂apN

∀i : api
≤ 0 ⇔ ̂api

≤ 0

∀i, j : api
≤ apj

⇔ ̂api
≤ ̂apj

∀i, j : |api
| ≤ |apj

| ⇔ | ̂api
| ≤ | ̂apj

|

| ̂ap1
| ≥ | ̂ap2

| ≥ … ≥ | ̂apn
|



Maximising Generic Cost Function with  boolean variablesn
A Framework for an  on maximization problemsA*

Idea:  
 and  

We derive a logic condition from  

 and  

We derive another logic condition from , if conflicting with an above condition, the above 
condition is preferred, until the total conflicting contributions of below conditions are greater 

than the initial one. In our example, if it can be rational to drop the logic 
condition derived from . 

̂ap1
> 0 ⇒ ∀t ∈ p1, x*t = 1 ̂ap1

≤ 0 ⇒ ∃t ∈ p1, x*t = 0

̂ap1

̂ap2
> 0 ⇒ ∀t ∈ p2, x*t = 1 ̂ap2

≤ 0 ⇒ ∃t ∈ p2, x*t = 0

̂ap2

| ̂ap2
| + | ̂ap3

| > | ̂ap1
|

̂ap1



Maximising Generic Cost Function with  boolean variablesn
A Framework for an  on maximization problemsA*

Mitigations:  
The sample  must be representative of the whole. 

 doesn’t imply 

 

Even more so as you keep stacking approximation errors. 

There are still  candidates for , a high entropy function close to  would not be 
solvable through this method. 

p1, …, pN

∀i, j : |api
| ≤ |apj

| ⇔ | ̂api
| ≤ | ̂apj

|
∀i, j, k : |api

| + |apj
| > |apk

| ⇔ | ̂api
| + | ̂apj

| > | ̂apk
|

2n p 1x=x*



Computing Complex Polynomial Roots
A framework for Universal Polynomial Root Approximation

Let , we call  the precision parameter.  
We introduce a function , that satisfies the property: 




where: 


z ∈ ℂ N
ϕℂ : {0,1}4(N+1) → ℂ

|z | < 2N ⇒ min
x∈{0,1}4(N+1)

|z − ϕℂ(x) | ≤ 2−N

ϕℂ(x) = (−1)x1

N

∑
k=−N

xN+k+22k + i(−1)x2N+3

N

∑
l=−N

x3N+4+l2l



Computing Complex Polynomial Roots
A framework for Universal Polynomial Root Approximation

Let  be a complex polynomial of . 

 

According to the Finite Sum Theorem, under the assumption that there exists a complex root  to  following  
 

Such a quantity rapidly converges to  as  
One way of seeing this is to call  to obtain the following upper bound to the approximation 

  

Practical use for higher degree Polynomials suggest using the alternative logarithmic cost function: 

P : X ↦
n

∑
k=1

zkXk ℂ[X]

f : x ↦ − | (P ∘ ϕℂ)(x) |

z* ∈ ℂ P ∈ ℂ[X] |z* | < 2N

f(x*) ≥ inf
θ∈[−π,π]
λ∈[0,1]

− |P(z* + λ2−Neiθ) |

0− N → + ∞
Z = 2−N + max

z′ :P(z′ )=0
|z* − z′ |

| f(x*) | ≤ Zn−12−N

f : x ↦ − log (1 + | (P ∘ ϕℂ)(x) |)



We have an  framework for Maximising . A* f : {0,1}n → ℝ

P ∼ NP



Directions.



Let . 

 There exists a SAT instance that models . 

 The complexity of generating such a SAT Instance is . 

 Real functions with  boolean variables are equivalent to a finite 
collection of SAT Instances. 

 

d : {0,1}n → {0,1}

I : d

II : O(poly(n))

III : n

f ≈ (−1)d−

N

∑
k=−N

dk2k

P ?= NP



What next? 

Exploration on the practical Business 
Implications of the Algorithm 

Research & Large-Scale Experiment 

EU Funding Application



Graphical Intuition for  

Precision parameter from 

ϕℂ

N = 1...4










